Nano-Carriers

Micro and nanoplastics as carriers for the spread of chemicals and antimicrobial resistance in the aquatic environment

A complementary and multi-disciplinary team

Norwegian Institute for Water Research

South Africa

Institute for Water and Wastewater Technology, Durban University of Technology (IWWT-DUT)

Cyprus

Department of Civil and Environmental Engineering, IWRC, University of Cyprus

France

GeoSciences Rennes (CNRS/university of Rennes)

France

IPREM, University of Pau

ULEOL

2

A complementary and multi-disciplinary team

Ian Allan Marc Angles d'Auriac Pawel Krzeminski Luca Nizzetto

Faizal Bux Sheena Kumari Isaac Dennis Amoah

MA

Irene Michael-Kordatou Despo Fatta-Kassinos Stella Michael Popi Karaolia

Julien Gigault

Melanie Davranche

Bruno Grassl Stephanie Reynaud

CIENCES

Ian J Allan 19

19.03.2021

Anchoring of the project

UN SDG 6

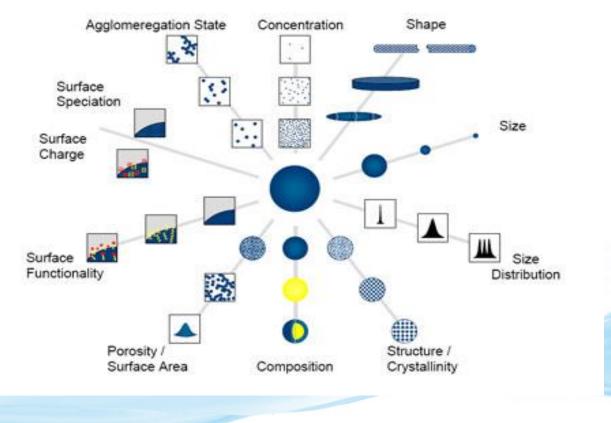
Understanding and reducing pollution and increased safe wastewater reuse (6.3), safeguarding of water resources and aquatic ecosystems (6.6)

UN SDG 3

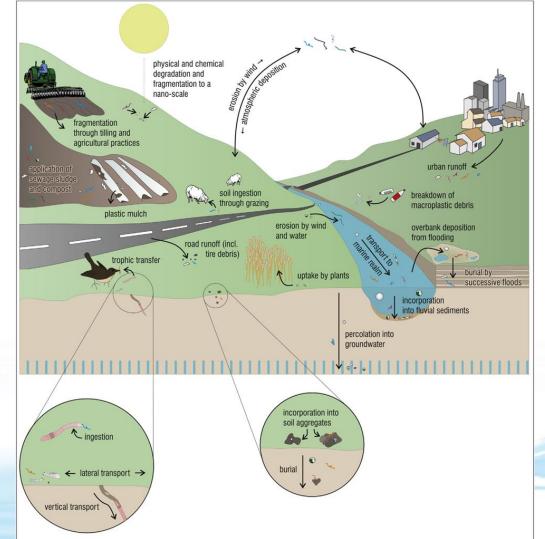
Good health and well-being, particularly regarding illness and deaths related to hazardous chemicals and environmental pollution and contamination (3.9)

UN SDG 11 Sustainable cities with a target focusing on waste management

Draft UN resolution on environ. & health (Dec 2017) Contribution to understanding the role of environmental pollution in the development of ARB, multidrug resistant bacteria also called "superbugs" resulting in increased mortality



Introduction: Context and challenge

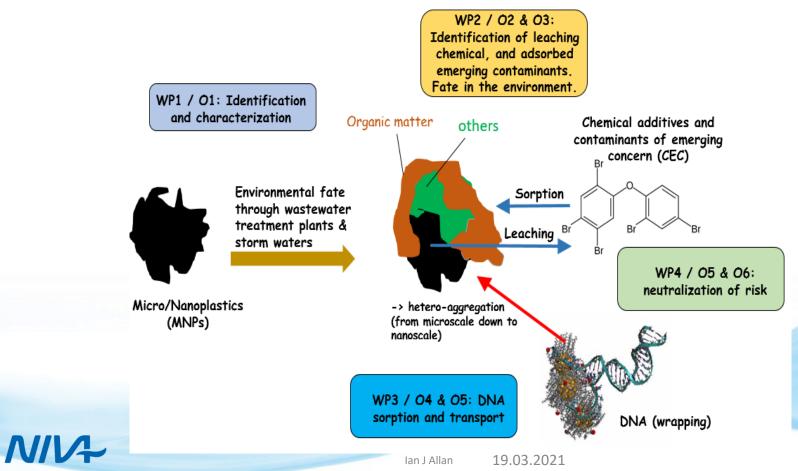

- > 300 million tonns of plastic produced worldwide in 2015
- This plastic can reach the aquatic environment in the form of debris of various sizes
- Most efforts have focused so far on plastics at the macro and micro scales
- Nano size plastics however may potentially the most hazardous
- Wastewater treatment effluents may be a significant source of micro and nanoplastics to the aquatic environment

Micro and nanoplastics

NIV

NIV

7


Aim of Nano-Carriers

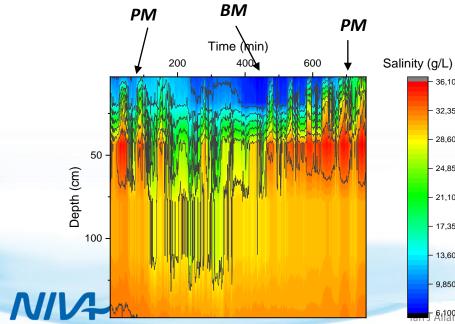
This project proposes to address two threats related to the potential for these MNPs to act as trojan horse for:

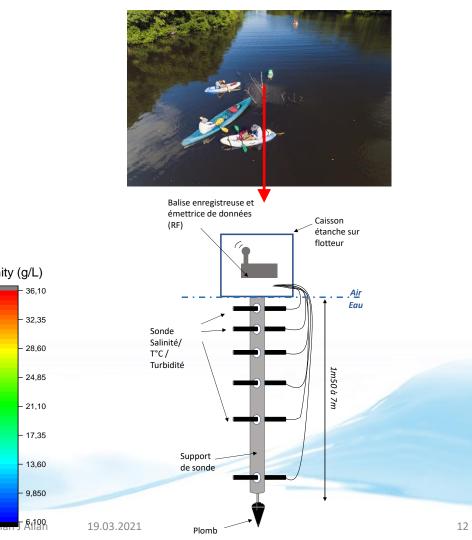
- (i) Chemical additives and contaminants of emerging concern (CECs)
- (ii) Antibiotic-resistance genes (ARGs) into aquatic ecosystems through wastewater reuse applications.

Project description and WPs

O1. Emission loads of MNPs under various scenarios and particle characterisation (WP1)

- Development of protocols for preparation and extraction of MNPs from wastewater effluents (sequential filtration, ultrafiltration, DLS...)
- Characterisation of MNPs present in wastewater effluents using a combination of techniques (Py-GC/MS, micro-IR spectroscopy, Asymmetrical flow field flow fractionation...etc)
- Assessment of the speciation and transport mechanism for MNPs released into the environment


Case study –La Gabarre (Guadeloupe)


- A 36ha open air landfill site with 215 000 tonns of waste deposited
- Effluents released into a mangrove
- Strong salinity gradients with depth in the mangrove

Case study - Norway (VEAS)

- VEAS is one of Oslo's sewage treatment plants (700 000 population equivalents)
- Receives sewage and urbanstorm waters
- Treatment consisting of sedimentation/filtration and biological treatment
- Release of effluent in the fjord
- A study in 2014:
- ~ 35 million plastic particles > 20 μm and 350k particle > 300 μm released into the Oslofjord every hour

Ristene på Vestfjorden Avlagsanlagg fanger opp tonnevis med plastappel som folk skyller ned i do og avlaget, men de klarer like å fange opp all mikroplasten som stvommer ut fra de tusen hjem Foto: Tor Bjerne Christensen.

En jevn strøm av mikroplast

Publisert 19.04.2018 av Tor Bjarne Christensen

Hver eneste time strømmer millioner av små plastbiter ut i Oslofjorden fra Vestfjorden Avløpsanlegg. Det er den samme historien i hver havn, hver elv, hver innsjø der avløpsvann renner ut. Vannet er fullt av mikroplast.

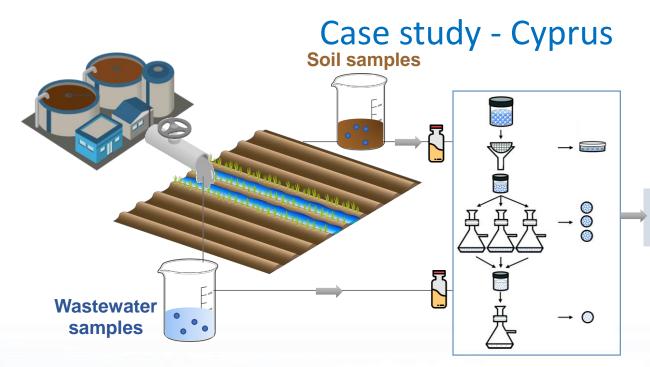
Bjerkåsholmen, Akershus, 1. mars

Prolog

Forestill deg lange konfiderer, med derer, haller og rom inne i fjellet, og gjennom det hele en mektig flod ev kloakk. Det er her det ender, det menneskelige evfallet, det du og jeg skyller ned i toaletter og servamer, det som stremmer ut fra vækemeskiner og opgvæskmaskiner. Renseenlagget er siste stopgested for hevet, og

Ian J Allan

19.03.2021


Case study -Sval

Ian J Allan

19.03

- Longyearbyen in Svalbard
- Average temperature in the range of -15 to 7 $^{\circ}\text{C}$
- No sewage treatment and release to the sea
- Passive sampling with silione rubber in 2016 revealed the presence of many flame retardants in the effluent

		Compound	pg/sampler	
	PBDEs	PBDE28	1480	
		PBDE47	53900	
		PBDE99	30600	
		PBDE100	5720	
		PBDE153	1990	
		PBDE154	1250	
		PBDE183	320	
	Novel brominated flame retardants (NBFRs)	PBBZ	964	
		BTBPE	788	VIII.
		HBB	1280	18-1 A.W.
		PBEB	276	1-1
		рТВХ	204	ALC: NO
		PBT	5040	
		alphaTBCO	<7	APRIL 1
		alphaTBECH	26500	BLOWN D
		HCDBCO	<0.6	88.1
		DPTE	<6.9	A CONTRACTOR
		antiDP	4910	10000
		synDP	3210	and the second
		TBCT	36	
		betaTBCO	<1.9	2
		betaTBECH	17600	2
		gama+deltaTBECH	5630	1
	2021 HBCD	aHBCD	2050	
		bHBCD	630	
.2021		gHBCD	2990.0	

Extraction, separation and characterisation of MNPs

Three UWTPs employing different treatment technologies (wastewater samples): -UWTP1: conventional activated sludge treatment, sand filtration and chlorination -UWTP2: membrane bioreactor treatment (MBR)

-UWTP3: MBR and chlorination

Soil samples will be also collected from the areas where wastewater effluents are being discharged.

Case study - Cyprus

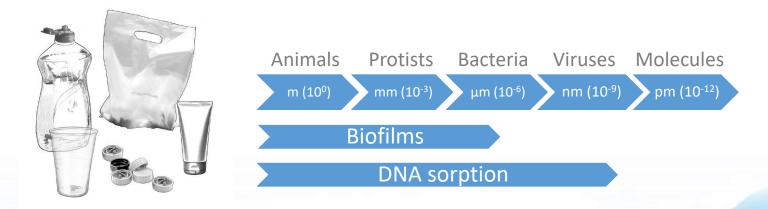
Treated wastewater effluents deriving from the three UWTPs are used for agricultural irrigation

Risk of releasing MPNs and MNP-sorbed chemical and biological contaminants of emerging concern (e.g. pharmaceutical compounds, antibiotic resistance genes) to the receiving environment

Case study – South Africa

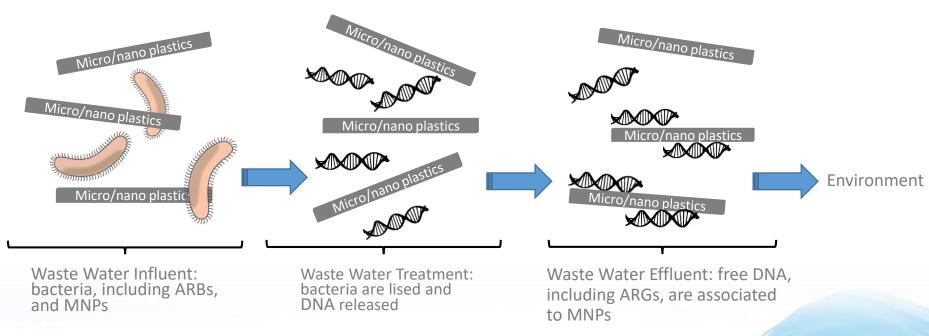
- Two sewage treatment plants with activated sludge in Durban
- Treatment of domestic and industrial wastewaters
- Discharge in rivers
- Water reuse by various local industries

O2 /O3. Identification and risk evaluation of relevant chemical additives associated with MNPs and adsorbed CECs (WP2)


Work with increasing system complexity:

- Preparation of well characterised/relevant MNPs in the laboratory
- Method development for the extraction of chemical additives and CECs from MNPs
 - Exhaustive and non-exhaustive extraction techniques to evaluate the accessibility of the chemicals sorbed to MNPs
 - Evaluate the impact of relevant environmental factors on the fate of these chemicals
- Application of these methodologies within the case studies
 - To effluents and receiving environments (freshwater, fjord/seawater, mangrove, soil/water reuse...)

DNA-MNP interactions


• DNA sorption and transport: ARGs Interaction with plastic

Plastic in the environment: scaling view and size interactions

O4 and O5. DNA-MNP interactions (WP3)

O4: Evaluate DNA sorption to MNPs, test on different plastic types and sizes, assess possible increased half lives, assess bioavailability

O5: Identify whether MNPs act as carriers of common DNA in UWTPs effluents and the aquatic environment and evaluate factors influencing sorption

O6. Review treatment and risk management options for our case studies (WP4)

- Review of the available wastewater treatment and risk management options, according to the specific conditions of the investigated case studies (e.g. reuse of treated effluents and discharges into freshwater bodies...)
- Conduct preliminary experimental assessments to investigate the fate of MNP-bound DNA in UWTPs during lab-scale UV-C and UV-C/H2O2 treatments
- Identification of technological solutions best suited to minimise the release of MNP-sorbed chemicals and ARGs, for the different scenarios

WP5. Stakeholder concertation

- Stakeholders:
 - Water development department of the Ministry of Agriculture, Rural Development and Environment oft he Republic of Cyprus (CYP)
 - Norwegian Environment Agency (NO)
 - VEAS wastewater treatment plant (NO)
 - ADEM French Environment & Energy Management Agency (FR)
 - UMGENI Water (SA)
 - Longyearbyen Town Council (NO)
- Two restitution seminars with stakeholders at national level
- Continuous communication, meetings at regular intervals, reports to disseminate project results
- Use of industry communication channels (industry meetings, webpages sectorial magazines...)

